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Abstract

Biventricular digital twins (BDT5) offer personalized
simulations of cardiac electrophysiology but often omit
key determinants of conduction, such as transmural scar
heterogeneity and  Purkinje—myocardial  junctions
(PMJs). We developed a pipeline integrating LGE-CMR—
based transmural scar modelling with anatomically
informed PMJ deployment. Clinical local activation time
(LAT) maps were used for patient-specific calibration,
and simulations were performed in three ventricular
tachycardia (VT) patients. The models achieved sub-10
ms LAT accuracy (mean ervor 6.11 + 3.26 ms, RMSE 6.85
ms) and reproduced clinically consistent reentry
locations. Incorporating PMJ and scar details improved
activation realism and arrhythmia reproducibility,
demonstrating a step toward non-invasive VT risk
assessment and individualized ablation planning.

1. Introduction

Biventricular digital twins (BDTs) enable patient-
specific simulations of cardiac function, arrhythmia risk,
and treatment response by integrating anatomical,
imaging, and electrophysiological data [1]. Despite
recent progress, most BDTs incompletely represent the
interplay between structural remodeling and conduction
system physiology, omitting key determinants of
arrhythmogenesis.

Many ventricular models adopt simplified scar
descriptions, treating scar as a two-dimensional surface
or homogeneous inexcitable volume, neglecting
transmural heterogeneity essential for slow-conduction
channels and reentrant circuits[2]. Moreover, the
Purkinje network and its Purkinje-myocardial junctions
(PMlJs), crucial for coordinated ventricular activation, are
often excluded, leading to systematic activation-time
errors [3].

We present a pipeline integrating (i) transmural scar
modelling from late gadolinium enhancement (LGE)
cardiac magnetic resonance (CMR) and (ii) anatomically
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informed PMJ deployment. Local activation time (LAT)
— based calibration refined conduction parameters, and
models were evaluated through ventricular tachycardia
(VT) induction and reentry simulations.

2. Methods

2.1. Data Acquisition & Mesh Generation

Three patients with ischemic cardiomyopathy—related
VT who underwent LGE-CMR, electrogram (EGM)
mapping, and ECG were selected.

The workflow for CMR-based reconstruction and
analysis is shown in Figure 1. Nine LV and one RV
meshes containing scar annotations were generated using
ADAS 3D [4], and combined into a 0.4 mm tetrahedral
biventricular mesh, consistent with recommended
monodomain simulation resolution [5, 6]. Myocardial
fiber orientation was assigned using the Laplace—
Dirichlet Rule-Based (LDRB) algorithm [7].

2.2. Transmural Scar & Fibrosis Modelling

LGE-CMR signal intensities were thresholded to
define: dense fibrosis (DF, = 60% MPI), border zone
(BZ, 40-60% MPI), and healthy tissue (HT, < 40% MPI)
[4, 8]. Scar information from the LV and RV meshes was
mapped to the volumetric model using a custom Python-
based point-to-point algorithm with distance-weighted
interpolation, ensuring faithful transmural distribution.

2.3. PMJ Generation & Conductivity Tuning

A sub-endocardial layer (10% LV wall thickness) was
extracted to host PMJs, reflecting anatomical evidence
that PMJs penetrate 1-2 mm beneath the endocardium
(LV wall: 8-12 mm) [9]. Recent myosin light chain 4
(MYL4) immunolabeling studies further demonstrated
that over 60% of Purkinje fibers form an intramural
network intercalating within the myocardium,
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Figure 1. Overview of the BDT construction pipeline

challenging the conventional view of an exclusively
subendocardial system [10].

A MATLAB-based algorithm distributed PMJ nodes
within this layer, preserving distal reconnection while
reducing PMJ density within BZ regions, consistent with
fibrosis-induced conduction disruption [11].

PMJ conductivity was tuned using clinical LAT maps.
The pacing site served as the primary calibration
reference, with a secondary basal LV site along a scar-
free pathway. Conductivity was iteratively adjusted until
simulated LATs matched clinical data at both sites.

2.4. Electrophysiological Modelling

Simulations were conducted in CARPentry. HT used
the Ten Tusscher—Panfilov 2006 (TT2) model; BZ
applied TT2 with reduced ionic conductances, INa 38%,
ICaL 31%, IKr 30%, IKs 20% of control [12]. DF was
non-conductive. Purkinje cells followed the validated
Trovato model [13]. HT longitudinal and transverse
conductivities were derived from ECG-based velocity
estimates. In BZ region, transverse conductivity was
reduced 90% to represent Cx43 remodeling [14],
longitudinal values remained unchanged.

2.5. Validation & VT Induction

Simulated LATs were compared with clinical LATs at
10 representative endocardial points per patient. Mean
absolute error quantified model accuracy. VT inducibility
was tested via S1-S2 pacing.

Reentry was defined as sustained >3 cycles with
closed-loop propagation. Simulated circuits were
compared with clinical ablation sites for spatial
agreement.

3. Results

3.1. LAT Accuracy

Simulated LATs matched clinical LATs at 10
representative validation points from the BDT of Patient
A (Table 1). Mean absolute LAT error was 6.11 +3.26 ms
(RMSE = 6.85 ms), with no bias toward early or delayed
activation and a maximum deviation of 11.55 ms. The
integrated PMJ calibration and transmural scar modelling
produced  physiologically  consistent conduction
dynamics across heterogeneous regions.
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Figure 2. Patient-specific VT induction and reentry circuit simulations

3.2. VT Induction & Reentry Circuits

Sustained VT was inducible in all three patient-
specific models (Figure 2). In Patients A and B, reentry
arose only via endocardial pacing, localizing to peri-scar
slow-conduction  channels;  reentrant  isthmuses
overlapped with clinical ablation sites. In Patient C, VT
occurred exclusively from epicardial pacing, with
activation traversing epicardial BZ regions consistent
with ablation targets.

Across all models, endocardial/epicardial inducibility
and reentry topology mirrored clinical observations,
validating both electrophysiological calibration and
anatomical fidelity of the framework.

4. Discussion

4.1. Key Contributions

This study addresses two major BDT limitations:
oversimplified scar representation and omission of
Purkinje conduction, achieving accurate LAT and VT
circuit reproduction. Integrating PMJ deployment with
transmural scar modelling enhances physiological
realism and predictive capacity.

4.2. Comparison with Prior Work

Camps et al. [3] incorporated realistic Purkinje
networks without scar detail. Villar-Valero et al. [15]
analysed BZ geometry without Purkinje fibers. Our
framework unites these, bridging anatomy and
electrophysiology. Recent reviews highlight that accurate
representation of scar and conduction systems is essential
for advancing non-invasive VT risk assessment [16]; our
findings demonstrate a feasible implementation.

4.3. Limitations & Future Directions

Point Clinical LAT (ms) Simulated LAT (ms) Difference (Sim — Clin, ms)

1 275 29.44 -1.94

2 31.91 36.44 —4.53

3 49.88 58.56 -8.67

4 121.71 129.75 -8.04

5 85.39 73.84 11.55

6 89.54 94.47 -4.93

7 25.24 27.04 -1.79

8 52.02 59.08 -7.06

9 84.99 94.01 -9.02

10 58.95 55.35 3.6

Mean + SD - - 6.11 £3.26 ms

RMSE - - 6.85 ms

Table 1. Comparison of simulated and clinical LATs at ten representative endocardial sites from Patient A. Mean
absolute error = 6.11 + 3.26 ms (RMSE = 6.85 ms); all deviations < 12 ms.
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PMJ deployment was anatomy-based rather than
patient-imaged, and calibration relied on two reference
sites, limiting parameter uniqueness. Future work will
explore probabilistic inference of Purkinje networks from
ECG [17] and machine learning—based optimisation to
enable clinically feasible real-time modelling and
personalised ablation planning.

5. Conclusion

We developed a physiologically detailed pipeline for
constructing biventricular digital twins integrating
transmural scar and anatomically guided PMJ
deployment. In three VT patients, the models achieved
sub-10 ms LAT accuracy and reproduced clinically
observed reentry locations. This framework advances
non-invasive VT risk stratification and individualised
ablation planning with strong translational potential for
precision electrophysiology.
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